If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4c^2-28c+44=0
a = 4; b = -28; c = +44;
Δ = b2-4ac
Δ = -282-4·4·44
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{5}}{2*4}=\frac{28-4\sqrt{5}}{8} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{5}}{2*4}=\frac{28+4\sqrt{5}}{8} $
| 190=1443.9+2.4m | | -4c=-3c-9 | | 9u-9=10u | | 0.21(10,000)-0.07y=0.03(y+10,000) | | 5y+15+5y+15=90 | | 190=144.39+.24m | | 5y+15-5y+15=180 | | 0.15x+0.05(20-x)=0.10(26) | | (3x+6)+(7x-18)=0 | | 4+8j=6j | | 25=2/3x | | -2d+6=-d | | f6=2.5 | | 6x-32=5x+2 | | -8w=-3w+10 | | 37/(10x-23)=0 | | 9-8u=-5u | | Q+5=-4q | | 3.75+2(4x+6.1)=3.25x | | 3x+2+x+4+90=180 | | 14.04=2s+3.06 | | 1x+3x=4x | | 7x-2(-x+8)=-88 | | 3(4c^2-28c+49)=15 | | 3u+36=-6(u+5) | | |6t+1|+5=2 | | 3+178=6x+238 | | x+37+90=180 | | p/8=90 | | 7x=156=9x+184 | | 3/4x-18=1/4x—4 | | 5x+4-2x=20 |